
The Secure Processor Paradox: When Security Metadata
Worsens Microarchitecture Security

HASP 2024 Keynote
Nov. 2nd 2024

Fan Yao

fan.yao@ucf.edu

https://casrl.ece.ucf.edu

University of Central Florida

mailto:Fan.yao@ucf.edu
https://casrl.ece.ucf.edu/

Outline

• The Battlefield in Microarchitecture Security

• When Secure Processors Break uArch Security: the Metadata Perspective

• Architecting Side-channel Resistant Secure Metadata Mechanisms

• Takeaways and Conclusions

2

Hardware as the New Battlefield for Security

3

• Performance has been the overly-focused goal for HW design

• Security of processor/hardware has been mostly overlooked

“We’ve made tremendous gains in IT in the past
40 years, but if security is a war, we’re losing it”

2018 Turing Award Lecture
Source: iscaconf.org

Pandora’s box opened

A Global Picture of Hardware Security

4

Memory

Core

Cache

Processor Chip

Core

StorageMemory Bus

 snooping

Data spoofingRowhammer

Cold-boot

L1 cache attacks

Shared Cache Attacks

BPU Attacks

Coherence Attacks

Contention Attacks

Side Channel
Attacks

Confidentiality
attacks

Integrity Attacks

What is the overall security landscape with the co-existence of so
many uarch/HW vulnerabilities?

What we already know: uArch is not a standalone problem from attack perspective

Example 1-[SpecHammer SP’22]: Rowhammer enhances attack capability of Spectre

Example 2-[PACMAN ISCA’22]: Speculation breaks HW-based pointer authentication

No Easy Answer to the Question!

Do secure mechanisms compose well in computing systems?

Weaken

Attack-surface A:
Vulnerabilities

Attack-surface B:
Vulnerabilities

5

uArch Security in the Era of Secure Processors

Secure Processors

6

uArch Security

✓Side and covert channels
✓Timing-based leakage
✓Attacks and defenses

Off-chip Data Security and
HW-enforced access control

Security of data due to on-
chip usage

uArch Security Architects:

Existing side channels work in
secure processors!

(e.g., Cache attacks and port
contention attacks)

Secure Processor Architects:

uArch attacks should be treated
individually by architects/SE

Typical TEE threat models exclude side
channels

✓CPU as root-of-trust
✓Secure memory architectures
✓Trusted execution env. (TEE)

But…Really?

7

uArch Security

✓Side and covert channels
✓Timing-based leakage
✓Attacks and defenses

Off-chip Data Security and
HW-enforced access control

Leakage of data due to on-
chip usage

WHAT IF:

The underlying secure processor designs break the assumption we
made about microarchitecture security?

Secure Processors
✓CPU as root-of-trust
✓Secure memory architectures
✓Trusted execution env. (TEE)
✓E.g., Intel SGX, TDX, AMD SEV

Secure Processor Architectures in a Nutshell

8

Main memory

Encrypt Decrypt
/+ Verify

Trust
boundary

• Decades of research on secure processors

Data

Core

Cache

Core

Processor Chip

Metadata
• Foundations of today’s TEE-enabled processors
• Industry solutions: Intel SGX/TDX, ADM SEV etc.

uArch Attacks: The Classical Data-centric View

9

Hardware Resources

uArch States

O
p

eratio
n

s

Side
Channels

Signal Extraction

Data

Memory load
Compute
…

The New View from Metadata

10

Shared HW Resources

uArch States

O
p

eratio
n

s

Side
Channels

Signal Extraction

Data

Memory load
Compute
…

Metadata

O
p

eratio
n

s

MetaLeak: Uncovering Side Channels in Secure Processor Architectures Exploiting
Metadata, Md Hafizul Islam Chowdhuryy, Hao Zheng and Fan Yao, ISCA’2024

Microarchitecture security investigation in the design space
of secure processors w.r.t. metadata mechanisms

Outline

• The Battlefield in Architecture Security

• When Secure Processors Break uArch Security: the Metadata Perspective

• Architecting Side-channel Resistant Secure Metadata Mechanisms

• Takeaways and Conclusions

11

Counters

Metadata in Secure Processors

12

Secure Processor

MAC Integrity TreeMetadata

Data Encryption
(AES counter-mode)

Data Authentication

Integrity Verification
(e.g., data replay)

Investigating Encryption Counter Mechanisms

13

Encryption
Counters

Data

Main memory

…Data Data DataCTR CTR CTR …

Encryption
Key

Counter

AES
One-Time Pad

Plaintext Data

Ciphertext Data

Counter-mode encryption
On data read

Read: load counter -> generate OTP -> XOR (C)

Investigating Encryption Counter Mechanisms

14

Encryption
Counters

Data

Main memory

…Data Data DataCTR CTR CTR …

Encryption
Key

Counter++

AES
One-Time Pad

Plaintext Data

Ciphertext Data

Counter-mode encryption
On data write

Store: Inc. counter -> generate OTP -> XOR (P)

Various Counter Mode Schemes

15

a) Global Counter (GC):

One counter shared among all memory blocks.D D D D …

Memory

GC

M

D D D D …

Memory

m m M m m

c) Split Counter: Major (M) + per-block Minor (m)

M is per-group (group of blocks), m is per-block.

b) Monolithic Counter (MoC):

One counter per memory block.

…

D …D D
Memory

MoC MoC

Counters are subject to overflow -> counter wrap around -> re-encryption of data blocks in the
counter-sharing group

Timing Vulnerabilities in Memory Encryption

16

● Split counter: Major (M) + per-block Minor (m)Abstract Counter-mode Encryption Mechanism

Write

…

M m m

Memory

DataData DataData

M m m

Decrypt +
Re-encrypt

Encryption counters create metadata state dependent uArch paths for writes
1. Slower: Program data write leading to counter overflow
2. Faster: For regular write cases (not triggering counter overflow)

Vulnerability Class-1

Input: 𝑷𝒕: current block to encrypt
Function Encrypt(𝑷𝒕):
 𝑐𝑡𝑟𝑜𝑙𝑑 = 𝑐𝑡𝑟
 Increment (𝑐𝑡𝑟) // Increment the counter
 if 𝑐𝑡𝑟𝑜𝑙𝑑 = 𝑐𝑡𝑟𝑚𝑎𝑥 then // Overflow detected
 // Re-encrypt memory blocks in group
 for 𝑃𝑖 in {𝐺 − 𝑃𝑡} do
 Decrypt(𝑃𝑖) with old counter
 Encrypt(𝑃𝑖) with new counter
 Encrypt(𝑷𝒕) using 𝑐𝑡𝑟

 else

 Encrypt(𝑷𝒕) using 𝑐𝑡𝑟

Investigating Integrity Verification Schemes

17
Classical hash-based tree

● Memory integrity protection: Typically performed using integrity tree

▪ Root of tree kept on chip

▪ Hash-based tree: Each node in tree is a hash of its child nodes

▪ Counter-based tree: Each node contains write counters for its child nodes

(Stored in Memory)

Memory Block

H H H…

…

H H H……

H H H… H H H……

…

H H H…

Leaf
nodes

Intermediate
nodes

root (On-chip)

Memory Block

Hash tree

Intermediate
Counters

Encryption
CountermM m… H mM m … H …

mM m… H
#

mM m… H
(Stored in Memory)

root (On-chip)

…

mM m… H mM m… H …

m m…

…

Leaf nodes

M

Counter tree
P

ar
ti

al
ly

 c
a

ch
ed

P
ar

ti
al

ly
 c

a
ch

ed

cached

… MemoryB

Hash

…

…

Cached

Level-0

Level-1

Level-2

Timing Vulnerabilities in Integrity Verification

18
Classical hash-based tree

● Integrity verification for data reads:

Read

Two additional
memory loads

Cached

Integrity verification path varies according to tree node caching state
Integrity tree traversal can lead to data reads with highly-variant latencies

Vulnerability Class-2

Input: ℬ: // Memory block to verify
Leaf node: 𝑁𝐴

𝑖 // The 𝑖𝑡ℎ −level ancestor tree

 node for an attached memory block ℬ

Function Verify(ℬ):
 // Assume block 𝑁𝐴

𝐿 is cached

 for 𝑖 from 1 to 𝐿 do

 Load Block(𝑁𝐴
𝑖)

 Verify (Block(𝑁𝐴
𝑖−1)) with 𝑁𝐴

𝑖

 Verify(ℬ) with 𝑁𝐴
𝑜

Abstract Integrity Verification Mechanism

Observation: Integrity tree traversal typically proceeds to the first cached node

Latency Characterization: Secure Processor Reads

19

Latency distribution due to integrity tree traversal

BMT Hash Tree Intel SGX

Highly distinguishable multi-level latencies w.r.t. integrity metadata accesses

Latency Characterization: Secure Processor Writes

20

Memory access latency impacted by counter overflow

Side Channels Exploiting Integrity Tree Metadata

21

Data Pa Counter
Integrity

Tree
Memory

Pv…

root Shared node

● Integrity tree is global

▪ Integrity tree creates shared tree blocks across security domains (e.g., enclave instances).

▪ Enabling shared-memory side channel even without explicit data sharing.

Vulnerability stemming from a new source of sharing - Metadata

High-level Exploitation Mechanism

22

Data PA Counter Integrity Tree

Memory

Pv…

root

…

Shared node
(NShared)

Counter
Cache …

…Tree
Cache

Initial state

…
…

Access [P1]

…
…

Access [P2]

NShared

Step 1: Evict shared tree block

…
…

Access [PV]

…
…

No Access
❶ ❷

Sharing of integrity tree metadata

Step 2: Victim execution

Access [PA] Access [PA]
❶ ❷

Slow verifyFast verify

Step 3: Timed load of a data block in PA

NShared

Read

NShared hit NShared miss

High-level Exploitation Mechanism

23

Data PA Counter Integrity Tree

Memory

Pv…

root

…

Shared node (N
s

) Counter
Cache …

…Tree
Cache

Initial state

…
…

Access [P1]

…
…

Access [P2]

Step 1: Evict shared tree blocks

…
…

Access [PV]

…
…

No Access
❶ ❷

Implicit sharing of integrity tree metadata

Step 2: Victim execution

Can infer victim’s secret via the timing for access of
shared tree node in integrity tree traversal

Step 3: Timed load of a data block in PA

NShared

Exploitation technique: mEvict+mReload

Access [PA] Access [PA]
❶ ❷

NShared

Read

NShared hit NShared miss

Slow verifyFast verify

Side Channels Exploiting Shared Counter

24

● Recall: Counter overflow leads to high latency variations

● Encryption counter blocks typically not shared across pages

● Counters in counter-based integrity tree are shared across domains

Initial state

M M

M

M

M

…Encryt.
Counters

Tree Counters

Step 1: Preset
shared counter

M M

M

M

Write [P1, P2]

M M

M

M

M

M

M

Write [PV] No Write❶ ❷

M M

M

M

M

M

M

❶ ❷

FastSlow

Write [P1] → Read [PA]

Overflow &
Re-encrypt

M M
D1 D2 DV

Step 2: Victim execution Step 3: Infer counter overflow

Write [P1] → Read [PA]

MetaLeak-C: High-level Exploitation Mechanism

25

Recall: Counter overflow leads to high latency variations.

• Encryption counters are typically per-page → not shared across processes.

• Counters in Counter-based integrity tree are shared across processes.

Initial state

M M

M

M

M

…Encryption
Counters

Tree Counters

Step 1: Preset
shared counter

M M

M

M

Write [P1, P2]

M M

M

M

M

M

M

Write [PV] No Write❶ ❷

M M

M

M

M

M

M

Write [P1] → Read [PA] ❶ ❷

FastSlow

Write [P1] → Read [PA]

Overflow &
Re-encrypt

M M

Step 2: Victim execution Step 3: Infer counter overflow

Allows monitoring of victim’s targeted write via
inferring counter state

Exploitation technique: mPreset+mOverflow

D1 D2 DV

Attacks against Real-world Programs: libjpeg

26

Attack setup:

… … … … … …

Victim’s memory block

Attacker’s memory block

Shared tree block

Data
Counter

Tree

Results:

Image reconstruction using Integrity
 tree side channels

Victim access detection
accuracy: 94.3%

Exploited gadget:

Attacks against Real-world Programs: libgcrypt

27

mEvict+mReload latency traces for secret
 exponent bit ‘100101’

Accuracy of exponent bit stealing:
91.2%

Results:Exploited gadget:

Attack mounted in SGX processor

How Metadata Mechanisms Break uArch Security

28

Existing uArch defenses cannot mitigate the metadata-based attacks

Assumptions made by typical microarchitectural defenses (data-centric)

For read-only memory sharing exploits

--> Disabling data/memory sharing on untrusted domains

For interference-based exploit (no memory sharing)

--> Isolation of shared HW resource for data access

 New dimension of sharing: metadata that is both readable and writable (indirectly)

Data

Cache Partition
Domain 1

Cache Partition
Domain 2

Metadata

Data

Metadata

Not compatible with coherence mechanisms

Takeaways

• Should be cautious about metadata usage in secure processors

• Scope of metadata-based mechanisms can be much broader

⁃ Industry: many variants of TEEs:

❖ Intel, AMD, ARM, Apple and Qualcomm

⁃ Academia: burgeoning of proposals of secure processor designs

❖More compact counters (easier overflow?)

❖TEE in GPUs and accelerators

• Have microarchitecture security mindset in secure processor designs

29

Outline

• The Battlefield in Architecture Security

• When Secure Processors Break uArch Security: the Metadata Perspective

• Architecting Side-channel Resistant Secure Metadata Mechanisms

• Takeaways and Conclusions

30

Observations from the Metadata Exploit

• Metadata sharing breaks the assumption of sharing in uArch Security

• Hard to address from the classical uArch defense perspective

31

Need to rethink the secure processor designs for microarchitecture security!

IvLeague: Side Channel-resistant Secure Architectures Using Isolated Domains of
Dynamic Integrity Trees Md Hafizul Islam Chowdhuryy and Fan Yao, MICRO 2024

Architectural support for leakage resistant integrity metadata
mechanisms in secure processor

Side-channel Resistant Integrity Metadata Mechanisms

32

On-chip

Domain 1 Domain 2

• Main idea: metadata-level isolation for integrity verification (IV)

⁃ Ensure no tree node sharing in memory between domains

Memory

Domain 1 Domain 2

Memory

On-chip

Statically Partitioning the Integrity Tree?

33

root

Memory

…

…

D1 D2 D3 D4

• Static partitioning

⁃ Fixed number of supported domains, fixed coverage per domain

⁃ Low domain management overhead (similar to global tree)

➢Does not scale well according to runtime domains (e.g., enclaves)

➢Could not support application with larger dynamic memory footprint

➢Rely on the OS (untrusted) to map pages from fixed region to domains

Fully Dynamic Isolated Integrity Trees?

34

root

Memory

On-chip

… Indirection

…

…

D1 D2 D3 D4

• Build and grow per-domain tree at runtime-> flexible memory coverage

• High runtime domain scalability

➢High metadata overhead for tree construction (i.e., indirection)

➢High tree traversal overhead -> long IV latency for reads

IvLeague: Dynamic Domains of Isolated Static Trees

• Each sub-tree (TreeLing) is statically mapped, no indirection needed for leaf-to-root traversal

• TreeLings are allocated to domain on-demand, resize integrity coverage during runtime

• Support a large number of runtime domains (upto 4K)

35

Split the integrity tree into many small but fixed-sized sub trees (TreeLing)

rootOn-Chip

TreeLing

Memory

Dynamic Page to
Leaf Mapping

…

…

Statically
mapped

HW-based tree node
allocation and reclamation

Treeling roots are
locked on caches

IvLeague: Performance Optimization Opportunities

36

IvLeague’s dynamic intra- and inter-TreeLing management enables performance
optimization not applicable in default secure processor designs

I

Intermediate node as leaf
Gradual intra-tree expansion

Utilized tree node

Unutilized tree node

I Intermediate tree node

Reduced IV path length

I I

I

I

Tracking and swapping
mapping for hot pages

Fast hotpage verification

Regular page Hot page

How does IvLeague Perform

37

Comparison of performance (i.e., Weighted IPC normalized to Baseline) under different schemes.

Performance of IvLeague-Basic: ↓2.7% ↓5.5% ↓17.4%
Small Medium LargeCompared to baseline

Performance of IvLeague-Invert/IvLeague-Pro: ↑8.2%/↑13.5% ↑3.4%/↑9.3% ↓13.2%/↑3.4%
Compared to baseline Small Medium Large

Side channel-resistant integrity mechanisms can have better performance
than the baseline insecure scheme with global integrity tree!

Takeaways and Conclusions

• uArch attacks are becoming ubiquitous

⁃ “The new buffer overflow”

• uArch security cannot be considered as a standalone problem!

⁃ Look at uarch security from a broader perspective

• The need to understand composability of security mechanisms

⁃ Would a defense for one threat bring a bigger issue for another?

• Performance and security can co-exist if done well

• Lots of things to explore for cross-threat model uArch security
research!

38

39

Thanks! Questions?

Fan Yao, Email: fan.yao@ucf.edu
UCF CASR Lab (https://casr.ece.ucf.edu)

IvLeague: Side Channel-resistant Secure Architectures Using Isolated Domains of
Dynamic Integrity Trees Md Hafizul Islam Chowdhuryy and Fan Yao, MICRO 2024

MICRO paper presentation on Tuesday Session 8A. Welcome to attend!

mailto:fan.yao@ucf.edu
https://casr.ece.ucf.edu/

	Slide 1: The Secure Processor Paradox: When Security Metadata Worsens Microarchitecture Security
	Slide 2: Outline
	Slide 3: Hardware as the New Battlefield for Security
	Slide 4: A Global Picture of Hardware Security
	Slide 5: No Easy Answer to the Question!
	Slide 6: uArch Security in the Era of Secure Processors
	Slide 7: But…Really?
	Slide 8: Secure Processor Architectures in a Nutshell
	Slide 9: uArch Attacks: The Classical Data-centric View
	Slide 10: The New View from Metadata
	Slide 11: Outline
	Slide 12: Metadata in Secure Processors
	Slide 13: Investigating Encryption Counter Mechanisms
	Slide 14: Investigating Encryption Counter Mechanisms
	Slide 15: Various Counter Mode Schemes
	Slide 16: Timing Vulnerabilities in Memory Encryption
	Slide 17: Investigating Integrity Verification Schemes
	Slide 18: Timing Vulnerabilities in Integrity Verification
	Slide 19: Latency Characterization: Secure Processor Reads
	Slide 20: Latency Characterization: Secure Processor Writes
	Slide 21: Side Channels Exploiting Integrity Tree Metadata
	Slide 22: High-level Exploitation Mechanism
	Slide 23: High-level Exploitation Mechanism
	Slide 24: Side Channels Exploiting Shared Counter
	Slide 25: MetaLeak-C: High-level Exploitation Mechanism
	Slide 26: Attacks against Real-world Programs: libjpeg
	Slide 27: Attacks against Real-world Programs: libgcrypt
	Slide 28: How Metadata Mechanisms Break uArch Security
	Slide 29: Takeaways
	Slide 30: Outline
	Slide 31: Observations from the Metadata Exploit
	Slide 32: Side-channel Resistant Integrity Metadata Mechanisms
	Slide 33: Statically Partitioning the Integrity Tree?
	Slide 34: Fully Dynamic Isolated Integrity Trees?
	Slide 35: IvLeague: Dynamic Domains of Isolated Static Trees
	Slide 36: IvLeague: Performance Optimization Opportunities
	Slide 37: How does IvLeague Perform
	Slide 38: Takeaways and Conclusions
	Slide 39

